The Advanced Muon Facility at Fermilab: Physics and Relationship to the Muon Collider

R. Bernstein, FNAL ENIGMA Collaboration

Muon Collider Physics and Detector Workshop
December 2022

Charged Lepton Flavor Violation

- Transitions among $\mu \leftrightarrow e \leftrightarrow \tau$ without neutrinos
 - cannot be weak interaction: non-SM process
- Directly linked to questions of flavor and generations
 - we observe mixing in quarks and neutral leptons: why not charged?
- Muon CLFV has been under study since the discovery of the muon; taus are also important

Neutrino Oscillations and Muon-Electron Conversion

- v's have mass! individual lepton numbers are not conserved
- Therefore Lepton Flavor Violation occurs in Charged Leptons as well

$$BR(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{1i}^2}{M_W^2} \right|^2 < 10^{-54}$$

Contributions to Muon CLFV

Supersymmetry

rate $\sim 10^{-15}$

Compositeness

 $\Lambda_c \sim 3000 \text{ TeV}$

Leptoquark

 $M_{LQ} =$ 3000 $(\lambda_{\mu d} \lambda_{ed})^{1/2}$ TeV/c²

Heavy Neutrinos

 $|U_{uN}U_{eN}|^2 \sim 8x10^{-13}$

Second Higgs Doublet

 $g(H_{\mu e}) \sim 10^{-4} g(H_{\mu \mu})$

Heavy Z' Anomal. Z Coupling

 $M_{Z'} = 3000 \text{ TeV/c}^2$

also see Flavour physics of leptons and dipole moments, <u>arXiv:0801.1826</u>; Marciano, Mori, and Roney, Ann. Rev. Nucl. Sci. 58, doi:10.1146/annurev.nucl.58.110707.171126;

CLFV Muon Processes

- $\mu \rightarrow e \gamma$
 - oldest studied, most powerful limits, and the best experiment so far: MEG at PSI
- $\mu N \rightarrow eN$
 - muon to electron conversion: muon converts in field of nucleus, leaving nucleus unchanged

$$R_{\mu e} = \frac{\Gamma(\mu^- + N(A, Z) \to e^- + N(A, Z))}{\Gamma(\mu^- + N(A, Z) \to \text{all muon captures})}$$

- two experiments upcoming at FNAL and JPARC
- $\mu \rightarrow eee$
 - ambitious and unique, excellent partner to other two (at PSI)

Mass Scales of Muon CLFV Searches

operator coefficients =1, from Physics Briefing Book, 1910.11775

Toy Lagrangian

$$\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{\Lambda^2} \, \bar{\mu}_R \, \sigma_{\mu\nu} \, e_L \, F^{\mu\nu} \quad + \quad \frac{1}{\Lambda^2} \bar{\mu}_L \gamma^{\mu} e_L (\bar{u}_L \gamma_{\mu} u_L + \bar{d}_L \gamma_{\mu} d_L)$$

mass scale 1

NNew Particles at High Mass Scale (leptoquarks, heavy Z,...)

Does not produce $\mu \rightarrow e\gamma$

"Contact Terms"

Supersymmetry and Heavy **Neutrinos**

Contributes to $\mu \rightarrow e\gamma$

(just imagine the photon is real)

A. DeGouvêa and P. Vogel, <u>1303.4097v2</u> [hep-ph]

for EFT treatment see S. Davidson and B. Echenard, 2010.00317 [hep-ph]

R. Bernstein, FNAL

MuC Physics and Detector Dec 22

"DeGouvea Plot: 2013"

higher mass scale

de Gouvêa and Vogel, 1303.4097

EFT: Beyond Λ and κ

S. Davidson and B. Echenard, 2010.00317 [hep-ph]

- Write EFT Lagrangian:
 - Dipole $(\mu \to e \gamma)$ + Contact Scalar $(\mu \to 3e)_L$ + Contact Vector $(\mu \to 3e)_R$ + Contact $\mu N \to e N$ (light nuclei) + Contact $\mu N \to e N$ (heavy nuclei)
- Parameterize coefficient space with spherical coordinates: lets you express constraints on all three processes simultaneously
- Will show you "slices" in the multi-dimensional space

Complementarity

S. Davidson and B. Echenard, 2010.00317 [hep-ph]

All three channels have strengths; we need the combination

• $\mu \to e \gamma$ and $\mu \to 3e$ at $\mathcal{O}(10^{-15})$ are a next-gen target

Decay Experiments

- $\mu^+ \rightarrow e^+ \gamma$ and $\mu^+ \rightarrow e^+ e^+ e^-$
 - these bring low energy (\sim 30 MeV) μ^+ to rest in material and observe the decay (surface muon)
 - in $\mu^+ \to e^+ \gamma$, accidentals scaling as I^2 are the limit; accidentals come from multiple muon decays and resolution limits
 - since accidentals drive the background, we want as continuous a beam as possible
 - in $\mu^+ \to e^+ e^+ e^-$, additional bkg from radiative muon decay, $\mu^+ \to e^+ e^+ e^- \nu_e \bar{\nu}_\mu$ with small E_ν

$\mu \rightarrow e \gamma$ Limits

- $\mu^+ \rightarrow e^+ \gamma$ as in MEG, but convert the photon for improved resolution (have a vertex from tracks)
 - lowers statistics by ~x100 but improves background rejection

Capture Experiment

- $\mu^- N \rightarrow e^- N$
 - brings a muon near an atomic nucleus where it falls into a muonic 1s state: monoenergetic electron just below m_μ
 - for several generations of experiments, including Mu2e/ COMET, the beam design was driven by radiative pion capture (RPC):
 - $\pi^- N \to \gamma N'$, $\gamma \to e^+ e^-$ at the signal energy
 - Mu2e/COMET use a *pulsed* beam and use the 26 ns pion lifetime vs 2.2 μ s muon lifetime to "wait out" RPC

Mu2e/COMET timing scheme

- Complicated plot, but for both Mu2e/COMET
 - pulse at beginning
 - wait for pions to decay
 - open a signal window

Conversion at Higher Atomic Number

- Model Discrimination and Possibly Larger Signal at high Z
- if Mu2e sees a signal, this is the obvious next step
- if not, we should try for another x10-100 better constraints

adapted from V. Cirigliano, B. Grinstein, G. Isidori, M. Wise Nucl. Phys. B728:121-134,2005

Limitation of Mu2e Method

- A beam pulse is ~250 ns FWHM
- You can't do an experiment inside the debris from the beam pulse
- And therefore you can't go to high Z: Ti about limit

New Facility: AMF

hep-ex 2203.08278

- The "Advanced Muon Facility" would use PIP-II to enable
 - CLFV in all three muon modes: world-leading facility
 - two new small rings for $\mu N \to e N$ at high Z and additional x100 in rate
 - with a possible DM experiment
 - x100-1000 more beam for $\mu \to e \gamma$ and $\mu \to 3e$ than are possible at PSI
 - Possible muonium-antimuonium and muon EDM

Conversion Physics

- Like Mu2e, target beam inside a solenoid, but at 100 kW 1MW vs. Mu2e's 8 kW
 - Mu2e-II at 100 kW, but not high Z
- Rebunch PIP-II beam in a "compressor ring"
- bring to proton target

the FFA for conversion from Japan:
https://indico.fnal.gov/event/46669/contributions/203147/
attachments/138314/173082/
PRISM CLFV 10122020 Pasternak.pdf

- Transfer to a fixed-field alternating (FFA) gradient ring
 - phase rotates to slow higher momentum muons, accelerate lower momentum muons
 - pion contamination greatly reduced while muons are circulating in ring (same notion of using π decay as Mu2e)
- Extract pure, cold muon beam to detector

Beam for Conversion

- Compressor Ring:
 - 500 kW achievable;
 - 12 ns kickers are the limit for 1 MW

Description	Protons-Per-Pulse	Pulse Spacing (ns)	Repetition Rate (Hz)
AMF	7.8×10^{13}	24	100
Dark Matter	6.2×10^{14}	196	100

Production Solenoid

- Mu2e at 8 kW requires a complicated heat and radiation shield to keep superconductor from quenching; COMET proposes 56 kW
- Mu2e-II Conceptual designs exist for 100 kW
 - "moving mass" target and thicker shield
- AMF would provide world-class physics at high-Z; 100 kW is just the first step
- Various ideas for 1MW have been promoted
 - ν targets for DUNE get to 1MW...why so hard?
 - not inside a superconductor

FFA

 PRISM (Phase Rotated Intense Source of Muons) (arXiv:1310.0804 [physics.acc-ph])

R. Bernstein, FNAL

21

Beam for Decay Experiments

- Two Options:
 - a conventional stopped muon beam at 1MW based on PSI but a new, dedicated facility for CLFV
 - use same production system as for capture experiments, but flip sign of selected muons
 - will require detailed MCs to choose

Existing Attempts

https://aip.scitation.org/doi/pdf/10.1063/1.3399332

- MERIT experiment
 - Liquid mercury this is an environmental problem (Minamata Convention)
 - Rep rates only about 70 Hz, limited by disruption of the jet. We need x10 faster
- Discussion of muon collider targetry: https://

 indico.cern.ch/event/1016248/contributions/
 4282384/attachments/2215324/3752155/
 MCa MUC Targetry 25Mar2021 v1.pdf

Beam Technical Challenges

- Things that are very hard that we know how to do:
 - stopped muon beam at 1MW
 - compressor ring

- Things that are very hard that we don't know how to do
 - 1MW target inside a superconducting solenoid
 - R&D here closely related to muon collider!

Summary

- Muon-based Charged Lepton Flavor Violation provides powerful searches and constraints for BSM physics
- A new facility at FNAL might provide all three muon channels, $\mu \to e\gamma, \mu \to 3e$, and $\mu N \to eN$ with orders of magnitude more data and open new possibilities in $\mu N \to eN$ at high Z
 - plus a dark matter experiment and other muon measurements not discussed.
 - technical challenges directly related to muon collider R&D
- We hope for P5 to recommend design of the program with submission to next P5